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1. Introduction 
 Winter road conditions change substantially depending on weather and traffic conditions.  For 
example, wet or slushy road surface conditions produced by daytime warmth or sunshine turn into ice crust or ice 
films at night.  In road management, determining the timing and appropriate measures requires accurate 
assessment of road surface conditions. 
 There are concerns about using of only buried sensors to detect local road conditions.  A method that 
can cover a wide area and accurately determine the condition of the entire surface is needed. 
 At present, an electric capacitance meter, an electric conductivity meter and a road surface reflectometer 
are used to measure moisture, including snow and ice, on road surfaces. A road surface sensor and a radiation 
thermometer are used to measure road surface temperature and atmospheric temperature. 
 In this study, we employed digital image processing as a discriminant method for wide areas and 
reported the results of the examination of digital images of various road surface conditions procured in the 
laboratory experiment and in the field. 
 
2. Asphalt specimens in a single road surface condition 
(1) Laboratory experiment 
 We used six specimens of porous asphalt concrete (30 cm × 30 cm × 5 cm), whose surface 
condition changes greatly according to road and weather conditions, for each road condition.  As shown in Photo 
1 (a - d), we chose four kinds of road surface conditions: dry, wet, ice-film and snow/ice.  For ice-film, the surface 
is covered with a film of ice and there is a void filled with ice. Snow/ice is a condition with a void filled with snow 
and ice. 
 Images were taken with a digital camera (2.1 million pixels) in a low-temperature room with and 
without a flash at a height of 70, 100, 150 and 180 cm from the specimens. 
 

a. dry b. wet c. ice-film d. snow/ice 

Photo 1   Image of each road condition (taken at a height of 100 cm) 
 
 
(2) Analysis method 
a) Intensity and the number of pixels 
 Intensity (I) represents the intensity of light of image data stored on a personal computer.  The 
gradation has a range of 256 values; higher intensity means brighter (whiter) and lower intensity means darker 
(blacker).  An analysis was performed after cutting road surface images into 256×256 pixel frames. 
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b) Statistical parameters 
 The relationship between I/Im (the intensity I standardized by the mean intensity Im) and the probability 
density function PI (I) in equation (1) is shown in Figure 1 and Figure 2, with and without a flash, respectively.  In 
both cases, dry and snow/ice conditions show similar distributions, while wet and ice-film conditions with a flash 
have a bimodal distribution with a peak at a high intensity like the snow/ice road surface condition.  The reason is 
thought to be the reaction of the water film and the ice film to the flash. 
 The central moment Mk is expressed by equation (2), and from Mk (k = 2 - 4), contrast (V), skewness 
(Sk) and kurtosis (Ku) are expressed by (3), (4) and (5), respectively. 
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 Contrast (V) is the degree of dispersion of the intensity distribution; a larger value indicates greater 
dispersion.  Skewness measures the asymmetry of the data of a probability density function.  The distribution is 
normal (symmetrical) when Sk = 0.  When Sk < 0, the data are spread out more to the left of the mean, i.e., the 
left tail is longer; when Sk > 0, the right tail is longer.  Kurtosis indicates the height of a probability density 
function, i.e., the degree of predominance of the intensity distribution.  When the distribution is normal, Ku = 3; 
distributions have rapidly attenuating tails when Ku < 3, and slowly attenuating tails, Ku > 3. 
 
 

 
Figure 1   Intensity I/Im distribution without a flash  
 
 

Figure 2   Intensity I/Im distribution with a flash 
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Figure 3   Relationships between contrast, skewness and kurtosis (h = 70 cm) 

 

Figure 4   Relationships between contrast, skewness and kurtosis (h = 180 cm) 

 
 
 The results of the analysis of the relationships between contrast V, skewness Sk and kurtosis Ku are 
shown in Figure 3 and Figure 4 for when the camera height is 70 and 180 cm.  A cluster of each road condition 
forms a little more clearly in the relationship between contrast and skewness than in other relationships.  The 
upper limit of each parameter becomes slightly larger as the camera height increases (V: 0.53 → 0.78, Sk: 0.75 
→ 1.1, Ku: 2.58 → 3.90), a change which means that the distribution is spreading. 
 
c) Autocorrelation function, RI (Δx,Δy) 
 An autocorrelation function (equation (6)) shows the degree of correlation of the intensities of two 
points separated by distance (Δx, Δy).  The points are pixels of 256 gradations.  From the polar coordinate 
representation RI (r, θ), with mean intensity Im, the angle-averaged autocorrelation function of the mean RI (r) is 
expressed by equation (7). 
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 Figure 5 shows the relationship between the autocorrelation function RI and the pixels r for each road 
condition (h = 150 cm).  The autocorrelation function tends to suddenly decline for each road condition with a 
difference of 5 or more pixels.  This kind of difference according to road surface conditions is not clear. 
 

Figure 5   Relationship between autocorrelation function RI (r) and pixel r 
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d) Power spectrum, SI (fx, fy) 
 Power spectrum SI (fx, fy) shows the distribution of power of each frequency component with the 
assumption that a variable intensity wave form is the sum of a series of frequency components.  From the polar 
coordinates representation SI (ρ,φ) of SI (fx, fy), the angle-averaged power spectrum SI (ρ) is obtained by 
equation (8). 
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Figure 6   Relationship between power spectrum and spatial frequency 
 
 
 Figure 6 shows the relationship between spatial frequency ρ and power spectrum SI (ρ).  For icy 
road surfaces, low frequency components are predominant and positional intensity fluctuations of road surfaces 
are small, whereas snow/ice road surfaces have many regions of low frequency components because of spotted 
road surfaces.  Dry and wet road surfaces show a tendency in between these two, and frequency analysis reveals 
no clear difference between dry and wet road surfaces. 
 A mean value of SI (ρ) in the spatial frequency range 10 ≦ ρ≦ 20 is regarded as low frequency 
components (low freq.) and that in the range 40 ≦ ρ≦ 50 is regarded as high frequency components (high 
freq.).  They are expressed by equations (9) and (10), respectively.  Figure 7 shows the relationship between the 
low and high frequency components.  Equation (11), a Fourier transform (FT), describes the relationship between 
the autocorrelation function (RI (Δx, Δy)) and the power spectrum (SI (fx, fy)). 
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Figure 7   Relationship between low frequency component (low freq.) and high frequency component 
(high freq.) 
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3. Asphalt specimens in a complex road surface condition 
(1) Analysis with parameters 
 Winter roads are prone to having fuzzy complex road surfaces rather than uniform ones.  We 
examined complex road surface conditions, which are combinations of the individual road surface conditions 
mentioned before. 
 As shown in Photo 2, we made six specimens of road surfaces for each condition: dry+wet, 
dry+ice-film, dry+snow/ice, ice-film+wet, wet+snow/ice and snow/ice+ice-film. 
 A laboratory experiment used a similar method for single road surface conditions.  Photo 2 shows 
photographs of complex road surfaces taken at a height of 180 cm.  Figure 8 shows the relationships between V, 
Sk and Ku.  A combination of each parameter discriminates between each road condition to some extent when 
taking into consideration that they are complex road surfaces.  However, with adjacent clusters, discrimination 
based on these parameters is not always easy. 
 

 
dry+wet 

 
dry+ice-film 

 
dry+snow/ice 

   

 
ice-film+wet 

 
wet+snow/ice  

snow/ice+ice-film 
Photo 2   Images of complex road surface conditions 

 
 
(2) Fuzzy inference 
 Applying fuzzy theory, we examined each road condition in terms of "certainty of occurrence" 
(goodness of fit) to make as objective a discrimination as possible. 
 In the analysis program, input variables in the antecedent part are V, Sk and Ku, and we call the 
goodness of fit of the occurrence of each road condition in the consequent part the rate of occurrence.  Based on 
the results shown in Figure 8, it was determined that the range of the membership function for each complex road 
surface had seven grades, from negative large (N.L.) to positive large (P.L.), as shown in Table 1.  Table 2 lists the 
rules for dividing the seven grades.  Table 3 shows the results of the discrimination between road surfaces after 
using fuzzy theory to infer six images of each road condition. 
 Correctly predicted road surfaces are shown by half-tone dot meshing; falsely predicted road surfaces of 
the first rank are shown by double frames. The ranking of falsely predicted road surfaces is indicated with a 2), 3). 
 Seventy-eight percent (28/36×100) of the predictions were correct.  Assuming that the first and 
second ranks of the rate of occurrence are included in the discrimination standard of the road management, 
prediction accuracy rises to 86% (31/36×100). 
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Figure 8   Relationships between contrast, skewness and kurtosis 
 
 
 
 
Table 1   Range of the membership function for complex road surface conditions 

 
 
 
 
Table 2   Rules set up for complex road surface conditions 

 
 
 
 
 
 
 

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
N.L -∞ 0.37 -∞ 0.00 －∞ 2.10 -0.17 0.17 -0.17 0.17 -0.17 0.17 -0.17 0.17 -0.17 0.17 -0.17 0.17
N.M 0.30 0.52 0.05 0.35 1.90 2.50 0.00 0.33 0.00 0.33 0.00 0.33 0.00 0.33 0.00 0.33 0.00 0.33
N.S 0.32 0.55 0.10 0.55 2.10 2.70 0.17 0.50 0.17 0.50 0.17 0.50 0.17 0.50 0.17 0.50 0.17 0.50
A.Z 0.37 0.61 0.20 0.50 2.50 3.15 0.33 0.67 0.33 0.67 0.33 0.67 0.33 0.67 0.33 0.67 0.33 0.67
P.S 0.40 0.63 0.25 0.85 2.75 3.40 0.50 0.82 0.50 0.82 0.50 0.82 0.50 0.82 0.50 0.82 0.50 0.82
P.M 0.45 0.68 0.35 1.00 2.90 3.50 0.67 1.00 0.67 1.00 0.67 1.00 0.67 1.00 0.67 1.00 0.67 1.00
P.L 0.59 ∞ 0.70 ∞ 3.10 3.70 0.82 1.17 0.82 1.17 0.82 1.17 0.82 1.17 0.82 1.17 0.82 1.17

antecedent part
ice-

film+snow/ice

consequent part

wet+snow/icecontrast skewness kurtosis wet+ice-filmdry+wet dry+ice-film dry+snow/ice

contrast skewness kurtosis dry+wet dry+ice-film dry+snow/ice wet+ice-film wet+snow/ice ice-
film+snow/ice

N.M N.M N.S P.S A.Z P.S N.M P.S P.S 1.0
N.S P.S P.M P.M P.M A.Z P.S N.S A.Z 1.0
N.M A.Z P.S P.L P.S A.Z N.S A.Z A.Z 1.0
N.S P.M P.L P.S P.L N.S P.S N.S N.S 1.0
P.S N.S N.L A.Z N.S P.L N.S P.M P.M 1.0
P.M N.S N.L A.Z N.S P.M N.S P.L P.S 1.0
P.L P.L P.M N.L P.S N.S P.L N.S N.M 1.0
A.Z N.L N.L A.Z N.S P.M N.M P.S P.L 1.0

consequent part
weight

antecedent part



7 

Table 3   Results of the inference of road surface discrimination by the fuzzy theory 

 
 
 
4. Discrimination between road surfaces in the field 
 We took photographs of each road condition on municipal roads neighboring our university of Sapporo.  
Photographs were taken under natural light at a height of 70, 100, 150 and 200 cm.  Photo 3 shows the various 
road surface conditions, including dry, wet, ice crust and compacted snow. 
 

dry wet ice crust compacted snow 
Photo 3   Image of each road condition on municipal roads 
 

dry+wet dry+ice-film dry+snow/ice wet+ice-film wet+snow/ice ice-
film+snow/ice

No. 1 　0.827  2) 0.832 0.494 0.663 0.335 0.494
No. 2 0.916 0.671 0.500 0.344 0.496 0.500
No. 3 　0.668  2) 0.920 0.332 0.668 0.332 0.332
No. 4 0.865 0.654 0.518 0.317 0.516 0.518
No. 5 0.850 0.648 0.523 0.311 0.522 0.523
No. 6 0.896 0.693 0.500 0.397 0.474 0.500
No. 1 0.670 0.920 0.330 0.670 0.330 0.330
No. 2 0.670 0.931 0.336 0.667 0.333 0.336
No. 3 0.626 0.861 0.331 0.689 0.330 0.313
No. 4 0.670 0.920 0.330 0.670 0.330 0.330
No. 5 0.743 0.865 0.409 0.667 0.333 0.409
No. 6 0.830 0.833 0.497 0.666 0.334 0.497
No. 1 0.500 0.333 0.859 0.333 0.859 0.750
No. 2 0.500 0.333 0.851 0.333 0.851 0.750
No. 3 0.500 0.333 0.849 0.333 0.849 0.750
No. 4 0.500 0.333 0.872 0.333 0.851 0.764
No. 5 0.500 0.333 　0.853  2) 0.333 0.870 0.740
No. 6 0.500 0.330 0.835 0.330 0.835 0.750
No. 1 0.222 0.687 0.333 0.865 0.330 0.191
No. 2 0.080 0.670 0.330 0.920 0.330 0.170
No. 3 0.080 0.670 0.330 0.920 0.330 0.170
No. 4 0.750 0.835 0.415 　0.670  3) 0.330 0.415
No. 5 0.750 0.835 0.415 　0.670  3) 0.330 0.415
No. 6 0.750 0.835 0.415 　0.670  3) 0.330 0.415
No. 1 0.500 0.333 0.845 0.333 0.878 0.727
No. 2 0.500 0.333 0.834 0.333 0.905 0.687
No. 3 0.500 0.333 0.849 0.333 0.849 0.750
No. 4 0.500 0.333 0.856 0.333 0.863 0.745
No. 5 0.500 0.333 0.834 0.333 0.916 0.684
No. 6 0.500 0.333 0.838 0.333 0.838 0.750
No. 1 0.596 0.426 0.744 0.239 0.744 　0.739  3)
No. 2 0.503 0.336 0.834 0.329 0.834 　0.750  3)
No. 3 0.500 0.333 0.833 0.172 0.667 0.947
No. 4 0.500 0.333 0.833 0.172 0.667 0.937
No. 5 0.500 0.333 0.833 0.172 0.667 0.948
No. 6 0.500 0.333 0.833 0.172 0.667 0.948

：when correctly predicted
：when falsely predicted

2), 3) ：ranking of the rate of occurrence when falsely predicted

ac
tua

l ro
ad

 co
nd

itio
n

rate of occurrence of road condition

road condition Ｎｏ．

dry+wet

dry+ice-film

dry+snow/ice

wet+ice-film

wet+snow/ice

ice-film+
snow/ice
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(1) Results of the analysis 
 Figure 9 shows the relationship between the probability density function PI (I) and intensity (I/Im) of 
images of municipal road surfaces.  The range of distribution was narrower than that of porous asphalt shown in 
Figures 1 and 2 for the reasons that the municipal roads were made with fine grained asphalt pavement, and that 
the snow and ice on the roads were uniform. 
 Figure 10 shows the relationships between contrast, skewness and kurtosis of the road surface images 
after analyzing six images of each road condition.  Discrimination was easier than for the results of the laboratory 
experiment since clusters are formed for each road condition in combinations of each parameter. 
 
 

Figure 9   Relationship between probability density function PI (I) and intensity I/Im 
 
 

Figure 10   Relationships between contrast, skewness and kurtosis of road surface images of municipal 
roads 
 
 
(2) Fuzzy inference 
 We also verified the accuracy of the discrimination by the fuzzy inference, based on the analyzed 
parameters.  With the membership function and the rule setting thought in the same way as in the analysis of 
complex road surfaces, the results of the inference is shown in Table 4.  When the results of the inference of each 
road condition was looked at with attention to the first rank of the rate of occurrence, actual road surfaces and 
inferred road surfaces all agreed with each other.  This is partly because they were not in the complicated road 
surface condition. 
 Although verification in the field of a wider range of road surface conditions will be needed in the future, 
the discriminant method of road surfaces by the image analysis and the fuzzy inference is thought to be effective. 
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Table 4   Results of the discrimination between road conditions by the fuzzy inference 

 
 
 
5. Wavelet analysis 
(1) Outline 
 Texture analysis using statistical parameters focusses on the intensity distribution of pixels in road 
surface images.  The time (or space) domain is transformed to the frequency domain via Fourier transform to 
obtain the autocorrelation function and the power spectrum.  An irregular intensity wave form is considered a 
series of frequency components. 
 However, temporal and spatial information is completely lost after the transform to the frequency 
domain.  Consequently, spatial allocation and local existence of road surface conditions cannot be learned with 
this analysis.  Commonly occurring examples of complex road surfaces would be a dry roadway surface with an 
ice crust surface on the shoulder and a road surface where longitudinal ruts have formed on ice crust. 

 In wavelet analysis, time and frequency 
analyses of signal intensity can be performed 
simultaneously. Not only frequency information but 
also time (positional) information can be obtained. 
 As a trial, we assumed a complex road 
surface with a dry surface on the left half and a 
snow/ice surface on the right half as shown in Photo 4, 
and examined the possibility of using wavelet analysis 
to discriminate between road surface conditions 
spatially.  
 
 

 

 
 

 

Photo 4   Surface of the specimen in the dry and 
snow/ice condition and the analysis line 

road condition No. dry wet ice crust compacted
snow

No. 1 0.889 0.441 0.697 0.754
No. 2 0.885 0.440 0.700 0.753
No. 3 0.891 0.441 0.697 0.754
No. 4 0.885 0.440 0.700 0.755
No. 5 0.901 0.441 0.696 0.754
No. 6 0.894 0.441 0.697 0.754
No. 1 0.370 0.875 0.699 0.510
No. 2 0.370 0.876 0.697 0.512
No. 3 0.370 0.875 0.700 0.510
No. 4 0.370 0.875 0.700 0.510
No. 5 0.372 0.877 0.697 0.512
No. 6 0.370 0.875 0.700 0.510
No. 1 0.541 0.596 0.920 0.754
No. 2 0.542 0.596 0.933 0.754
No. 3 0.540 0.598 0.920 0.752
No. 4 0.540 0.595 0.920 0.755
No. 5 0.540 0.598 0.920 0.752
No. 6 0.540 0.595 0.920 0.755
No. 1 0.542 0.441 0.535 0.948
No. 2 0.540 0.440 0.535 0.948
No. 3 0.542 0.441 0.535 0.948
No. 4 0.540 0.440 0.533 0.948
No. 5 0.542 0.441 0.534 0.948
No. 6 0.540 0.441 0.535 0.946

rate of occurrence of road condition
ac

tua
l ro

ad
 co

nd
itio

n

dry

wet

ice crust

compacted
snow
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(2) Wavelet transform 
a) Continuous wavelet transform 
 If a wavelet function is expressed as ψ(t), a base function ψa, b(t) can be generated by translating 
 ψ(t) parallel to the t-axis (shift) and scaling it (dilation).  ψa, b(t) is expressed by equation (12). 
 

( ) 






ａ

ｔ－ｂ
＝ｔ， ψψ

a
1

ba
   (12) 

 
where a and b are parameters of scaling and parallel translation, respectively.  The inner product of ψa, b(t) and the 
signal f(t) gives the wavelet transform, and is expressed by equation (13).  A wavelet development coefficient is a 
generated numerical value which represents the degree of similarity between the signal f(t) and the mother wavelet 
ψ(t). 
 
 ( )( ) ( ) ｄｔ

ａ

ｂｔ
ｔｆ

ａ
＝ａｂｆψ ∫

∞

∞





 −

-

1,W ψ   (13) 

 
 In this study, we showed examinations of the results using Haar and Daubechies wavelets, the most 
basic of mother wavelets.  Haar wavelet, the simplest mother wavelet, is expressed by equation (14). 
 

1 ( 0≦ｔ＜1/2 ) 
ψ( t )＝   -1 ( 1/2≦ｔ＜1 )          (14) 

              0 ( otherwise ) 
 
b) Discrete wavelet transform 
 The discrete wavelet transform, which makes coordinates discrete, can be used for an effective 
time-frequency analysis of the signal.  For the discrete wavelet, equation (12) is expressed by equation (15).  In 
the equation, j is a level and k is an amount of shift.  The signal f(t) is approximated by a linear combination of a 
scaling function φ(t).  An approximate function f0(t), a linear combination of φ(t), is expressed by equation (16).  
The signal f(t) is expressed by the sum of linear combinations of wavelets and φ(t) from level 1 to an arbitrary 
level. 
 
 ( )ｋｔ（ｔ）＝

ｊ
ｊ

ｊ，ｋ
-22 -

2
- ψψ  (15) 

 ( ) ( )∑
ｋ

ｋ ｔ－ｋｓ＝ｔｆ ϕ0   (16) 

 
Sk is a mean value of the signal f(t) in the section [k, k+1] and is expressed by equation (17). 
 

 ( ) ( ) ( )∫ ∫
∞

∞

+

-

1
dtdt-
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With the shift and dilation of the integer of this scaling function thought of like wavelets, φj, k is defined by equation 
(18).  Also, an approximate function fj(t) of level j is expressed by equation (19), using φj, k. 
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ｊ

ｊ
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-

k, 22 ϕϕ   (18) 

 ( ) ( ) ( )∑
ｋ

ｊ
ｋｊ ｔｓ＝ｔｆ kj,ϕ   (19) 

 
Sk (j) is a scaling coefficient and obtained by the inner product of a scaling function φj, k. 
 f1(t) is a state lacking information from f0(t).  This missing part g1(t) is a high frequency component.  
Accordingly, f0(t) is restored by equation (20) as a multiple resolution approximation (MRA). 
 
 ｆ0(t)＝ｆ1(t)+ｇ1(t)  (20) 
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 Figure 11 shows a decomposed 
model of the signal s used in this study.  
Low frequency component a1 is obtained by 
removing high frequency component d1 from 
s, and a2 is obtained by removing d2 from a1.  
Conversely, the signal s is reconstructed by 
combining a3, d1, d2 and d3. 
 

 
 
(3) Results of the analysis 
 Regarding the road surface in Photo 4 with a dry surface on the left half and a snow/ice surface on the 
right half, we transformed the wave form of the intensity distribution on the line crossing the photograph into a 
one-dimensional signal and analyzed its frequency distribution.  Figure 12 shows an original signal of the 
one-dimensional frequency distribution crossing from the dry section to the snow/ice section.  Figure 13 shows 
the results of the analyses using Haar and Daubechies (N = 10 wavelets). 
 

 a3 is a low frequency wave form and 
d3, d2 and d1 are high frequency wave 
components when level j = 3 - 1, respectively.  
Level j represents a scale of the mother wavelet.  
Level 2 is the level 1 scale doubled, and level 3 
is level 1 scale tripled. 
 Looking at low frequency 
component a3 in Figure 13, there is a 
remarkable difference in waveforms before and 
after the pixel count of around 150 for both of 
Haar and Daubechies, indicating a difference in 
road surface conditions. 
 However, because the frequency 

analysis of the relationship between frequency and a road surface condition corresponding to amplitude has not 
been made, the discrimination between road surface conditions cannot be made although information on the 
location is shown. 
 
 
6. Conclusion 
 We obtained the following conclusions from the results of the laboratory and the on-site experiments on 
discriminant methods of winter road conditions based on image processing. 
(1) The results of the laboratory and on-site experiments showed that three statistical parameters (contrast, 
skewness and kurtosis) were effective in discriminating between road surface texture of single road surface 
conditions.  However, an autocorrelation function and a power spectrum generated by Fourier transform do not 
clearly show a difference in road conditions. 
(2) The discrimination between complex road surfaces is sometimes not clear because clusters of parameters of 
each road surface are adjacent.  However, by applying fuzzy theory, the percentage of true prediction reaches 
about 80 %. 
(3) Although we performed a wavelet analysis to examine a method for discriminating between local parts of road 
surfaces, we could simply make the location of a different road surface condition clear.  It is necessary to 
discriminate also between road surface conditions in the future, by giving a more detailed multiple resolution 
analysis of the original signal. 
 

 

Figure 11   Decomposed model of the signal in the MRA 

 
Figure 12   Original signal crossing between the dry 
section and the snow/ice section 

ｄ3333    ｄ2222    ｄ1111    

ａ3333    ａ2222    ａ1111    ｓ    
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Figure 13   Results of the wavelet analyses using 
Haar (above), and Daubechies (N = 10) (below) 
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